

Mars Communications Network

C. Edwards, S. Burleigh August 10, 2006

chad.edwards@jpl.nasa.gov, scott.burleigh@jpl.nasa.gov

Outline

- Why we need a Relay network at Mars
- Investments needed for Mars Relay network

Relay Telecommunications

- Direct-to-Earth link
 - Constrained EIRP
 - Large comm path length
 - Low data rates, high energy cost
 - Limited to Earth in view
- Telecommunications relay
 - Short comm path length
 - High data rates (even with simple omni links), low energy cost
 - Contact at times when Earth is not in view
 - Connectivity is strong function of orbit

MEP Telecommunication Needs

- Increased data return
 - Augment comm bandwidth for high spatial/spectral/temporal resolution instruments
- Energy efficiency
 - Enable small, low-cost mission concepts
- Connectivity
 - Support interactive, in situ ops
- Critical event telemetry
 - Capture engineering telemetry during high-risk mission phases
- Radio-based navigation
 - Utilize radio metric observables on comm links for in situ nav

Increased Data Return

- High-resolution remote sensing instruments
 - MER (2003) Pancam
 - 0.3 mrad angular resolution; 12 filter bands distributed over two stereo apertures
 - ~10 Gb full spatial/spectral resolution data volume; ~ 0.1 - 1 Gb product data volumes in typical surface ops
 - MSL (2009) Mastcam
 - High-definition video capability
 - Will generate 2 Gbits of MPEG-compressed video in 4 min
- Increased mobility and autonomy as data rate drivers
 - Frequent change of environment
 - Increased data acquisition between ground command cycles
- Public outreach virtual presence on Mars
 - Over 100 Million NASA web page hits for Sprit landing Jan 3-4, 2004

Energy Efficiency

- Highly mass- and energy-constrained mission concepts are enabled by energy-efficient relay links.
 - Small landers (e.g., Beagle2, Netlanders)
 - Aerobots (ARES, Mars Balloons)
 - Microprobes (DS-2)
- Even for larger landers, efficient relay links free up energy for increased mobility & science operations.

Connectivity

- Complexity of in situ operations in a dynamic and unpredictable surface environment demands frequent closure of decision loops with ground science and engineering teams.
 - Multiple command/telemetry opportunities per sol increase surface ops efficiency.
 - RTLT of ~10-40 min precludes "joystick" ops, but still allows multiple command cycles per sol.
- Relay link allows contact on night side of Mars when Earth has set.
- Relay infrastructure supports global communications, including polar regions which are seasonally out of view of Earth.

Critical Event Telemetry

- Mars Polar Lander '98 was lost during terminal descent.
 - No comm link at time of anomaly
- In response to this event, the Mars Program has established a policy of capturing telemetry during all critical mission events (e.g., EDL).
- Very limited comm capability available on DTE link if reliable low-gain link desired.
 - "Semaphores" offer effective 1 bps information rate.
- Relay orbiter can support much higher-rate lowgain link, but requires relay asset satisfying temporal and spatial constraints.
 - Kbps-class links supportable with "omni" links

Radio-Based Navigation

Precision Approach Navigation

 Doppler/range on RF link between approach spacecraft and orbiter

Orbiting Sample Canister Tracking

- 1-way or 2-way Doppler tracking on proximity link
- Open-loop recording for weak signals

Surface Positioning

1-way or 2-way Doppler/range tracking on proximity link

2003/2004 Mars Relay Operations

X-band Direct-to-Earth

UHF Relay Link

Backup/Demo UHF Link

Spirit

Opportunity

Beagle 2

Relay Telecommunications for MER

- Increased data return
 - Spirit and Opportunity have returned over 175 Gb of data (compare to 3 Gb for Mars Pathfinder)
 - 97% of MER data return has come via the ODY and MGS UHF relay paths
- Energy efficiency
 - 20 200x increase in Mb/W-hr for UHF relay vs. X-band DTE
- Critical event telemetry
 - 8 kbps UHF link to MGS during EDL (vs. ~1 bps X-band DTE link)
- Radio-based navigation
 - <10 m position determination in Martian reference frame, based on Doppler measurements on UHF relay link</p>

Second-Decade Landed Mission Concepts

						-
	Mars Science Laboratory	ExoMars (ESA)	Astrobiology Field Laboratory	Geophysical Network Landers	Mars Sample Return (Rover)	Mid-Rover Mars Missions
Agency	NASA	ESA	NASA	NASA	NASA	NASA
		100 B				
Mission Concept	science laboratory that will study the Martian surface and pave the	environment and to search for life		landers will measure conditions at their locations on the surface, seismic activities, meteorology, the planet's internal structure, and its magnetism	return	Mid-size rovers to carry out scientific investigations of Mars in areas (such as the planet's geochemistry or internal structure)
Launch/Arrival:	LD: 9/15/09-10/4/09 AD: 7/10/10-9/22/10	LD: May 2011 AD: June 2013	2nd Decade	2nd Decade	2nd Decade	2nd Decade
Mission Duration:	1 Martian Year	Rover: 180 Sols Lander: 6 yrs	1 Martian Year	1 Martian Year	< 6 months (surface)	90-Sol
Exploration Type:	Large Roving Laboratory	Small Lander with Mid-size Rover	Large Roving Laboratory	4-6 Fixed Landers	Lander with Earth Return Vehicle and MER-Class Rover	MER-like Rovers
Landing Site:	+/-45 deg latitude	-15 to +45 deg latitude	-55 to +70 deg latitude	+/-80 deg latitude	+/-45 deg latitude	TBD
EDL Comm:	X-band + UHF	UHF + X-band(Backup)	UHF	UHF	UHF	TBD
Surface Comm:		X-band(backup)				
-ŹŹÆĎŹward Link	UHF relay & X-band DFE	UHF relay & X-band DFE (Backup Command)	UHF	UHF	TBD	UHF
-ŹŹ ÆŹ urn Link	UHF Relay & X-band DTE	UHF Relay & X-band DTE (Emergency Telem)	UHF	UHF	TBD	UHF
X-band Radio:	SDST, MER-class RFS (15 W SSPA, 28 cm HGA)	NA	TBD	None	Lander has SDST w/LGA	None
UHF Radio:	Electra-lite	TBD	Electra-lite	Electra-Lite	Electra-Lite on both Lander and Rover	Electra-Lite
Return Link Data Volume	250-1000 Mb/sol	250-1000 Mb/sol (Rover)	250-1000 Mb/sol	40-50 Mb/sol/lander	100-250 Mb/sol (Rover)	100-250 Mb/sol
Requirements		50-100 Mb/sol (Lander)	250-1000 IVID/SOI	40-50 IVID/SOI/Idiluel	50-100 Mb/sol (Lander)	100-250 WID/SOI

Electra Enhancements

- Electra's software radio architecture provides an opportunity to significantly improve MRO's relay capabilities.
 - Partially compensates for loss of relay capabiltiy due to MTO cancellation.
- Three performance enhancement options:
 - Implement adaptive data rates (under development in MTP).
 - Increase highest available data rate (from 1 Mbps to 4 Mbps).
 - Add Reed-Solomon error-correcting codes.

	Adaptive Data Rates	Add 4 Mbps upgrade	Add Reed Solomon Coding
Performance Benefit	2.0 dB (>50% improvement)	3.1 dB (total) (~2x improvement)	3.9 dB (total) (~2.5x improvement)
Implementation Cost	\$40K	Add'l \$185K	Add'l \$250K

Given the enormous benefit-to-cost ratio, we strongly recommend implementing all three of these options on MRO.

Deep Space Links

- 180W Ka-band TWTA
- High-resolution remote sensing orbiters will drive the need for high-rate orbiter downlinks.
 - MRO will only map <1% of Mars at full HiRISE capability due to current data rate limitations.
 - Limited X-band spectrum motivates continued migration to Ka-band.
- MSL-class landers will utilize DTE/DFE links for increased contact opportunities and backup to relay.
- Potential DSN Array upgrade, combined with emerging spacecraft telecom technologies, offer 10-100x improvement in 2nd-decade DTE capabilities.

Direct-to-Earth Downlink Data Rate Capability							
	MER-class	MRO-	MRO+				
	X: 15 W/28 cm	X: 100 W/3 m	Ka: 35 W/ 3m	Ka: 180 W/3 m			
34m	0.0005	0.5	0.3	1.7			
70m	0.002	2.1	* n/a	n/a			
Array (180 x 12m)	0.011	11.2	* 7.4	38.2			
(@2.7 AU Earth-Mars Dis	stance)						

Automation

- Mars operations in 2003/2004 encompassed 13 potential links, each requiring scheduling, data selection, data rate management

 – all done manually.
- Mars ops in the 2020s could involve four orbiters, eight landers, forty or more links.
- Automated network protocols simplify operations, enabling networks to scale up.
 - CFDP store-and-forward overlay.
 - Delay-tolerant networking protocols.

User application							
	File Transfer	Asy	ynchronous Messaging				
Bundle Protocol (intra-DTN routing)							
LTP (retra	nsmission)	TCP (retransmission)					
CCSDS encaps	ulation packets	intra-Internet routing)					
CCSDS AOS	CCSDS Pro	x-1	Ethernet				
R	/F, optical	wire					

Mars Telecommunications Options

- Current Mars Robotic program telecom strategy:
 - Grow & sustain relay infrastructure based on periodic launch of long-lived relayequipped science orbiters
 - Augment large landers with DTE for risk mitigation & flexibility

Mars Relay Network Orbiters

	Mars Global Surveyor	Mars Odyssey	Mars Express	Mars Reconnaissnace Orbiter
Agency:	NASA	NASA	ESA	NASA
Launch:	Nov. 8, 1996	April 7, 2001	June 2, 2003	Aug, 12, 2005
Mars Orbit Insertion:	Sep. 11, 1997	Oct. 24, 2001	Dec. 24, 2003	Mar, 2006
Orbit Characteristics:	~400 km circular sun-synch ~2 PM asc node 93 deg inclination	~400 km circular sun-synch ~5 AM asc node 93 deg inclination	250 x 10,142 km elliptical non-sun-synch 86.3 deg inclination	255 x 320 km sun-synch ~3 PM asc node 93 deg inclination
UHF Radio:	Mars Relay (CNES)	CE-505	Melacom	Electra
Link Protocol:	Mars Balloon Relay (MBR)	CCSDS Proximity-1	CCSDS Proximity-1	CCSDS Proximity-1
Forward Link: - Frequency - Data Rates - Coding	437.1 MHz n/a (MBR tones only) n/a	437.1 MHz 8 kbps uncoded	437.1 2, 8 kbps uncoded	435-450 1,2,4, É , 1024 kbp s uncoded or 7,1/2
Return Link: - Frequency - Data Rates - Coding	401.528711 MHz 8, 128 kbps (7,1/2) Convolutional	401.585625 MHz 8, 32, 128, 256 kbps (7,1/2) Convolutional	401.585625 MHz 2,4, É ,128 kbps (7,1/2) Convolutional	390-405 1,2,4, É , 1024 kbps (7,1/2) Convolutional

Relay Infrastructure Robustness

 Existing set of orbiters provides robust coverage through current decade, but will require replenishment in the second decade

Relay Orbiter Replenishment

- A robust infrastructure strategy would maintain a *nominal* population of at least 2 orbiters over time.
 - Avoids single-point failure for relay-dependent missions.
- Relay network occupancy will be a function of *lifetime* and *launch rate*.
 - Launching an orbiter every 3rd opportunity requires >10 yr lifetime to maintain redundant relay assets.

Assumes 12-month
Cruise/Commissioning Period

Preliminary Architecture Comments

Initial architecture assessment based on nominal 10-year lifetime for each relay orbiter:

Redundant MRO/ODY support for MSL

'11/'13 Orbiter provides relay coverage for '16, '18, '20 opportunities

No residual feedforward relay assets

• • •

2009	2011	2013	2016	2018	2020	2022	2024
MSL	Scout	Mars Science Orbiter + Telecom	Mid-rovers (2)		Planetary	MCD Oubites	MCD Mahila
	or		or	Scout	Evolution &	MSR Orbiter	MSR Mobile
	Mars Science Orbiter + Telecom	Scout	AFL	3330	Meteorology Network	+ ERV	Lander

'01 ODY

MSR Orbiter can support MSR lander

'05 MRO

'11 Sci/Telecom Orbiter

'13 Sci/Telecom Orbiter

'22 MSR Orbiter

Program should place high priority in achieving >10 yrs operational lifetime from ODY and MRO, in order to provide more robust, redundant relay support to 2nd-decade missions

Summary of Investments Needed

- Upgrade Electra on-board UHF radios for communication between landed vehicles and relay orbiters.
- Upgrade DTE capability Ka-band radios and DSN Array – for communication between relay orbiters and Earth.
- Automate network operations, using advanced protocols.
- Assure robust relay infrastructure by maintaining a Mars mission launch program that replenishes relay orbiter capability.

Key Aspects of Relay Communications

Orbiter Deep Space Link:

- Data rate (~power x gain)
- Frequency (X, Ka)
- Range variation (25x comm performance)

Orbit:

- / Slant range
- Connectivity
- Global Coverage

Proximity Link:

- Frequency band
- Comm protocols
- Multiple Access Scheme

Orbiter Proximity Link:

- Data Rate
- Antenna gain/steering

User:

- Transmit power
- Antenna gain/steering
- Power/energy constraint

Relay Orbiter Lifetime: Fuel

- ODY and MRO both have significant fuel reserves, with potential for operation beyond 2020
- Both projects are considering science-driven options that would shorten potential extended mission lifetime
 - ODY: Move to 3 PM LMST for improved THEMIS imaging
 - MRO: Extend ops in low-altitude Primary Science Orbit
- Recommend adopting fuel use strategies that allow for ODY/MRO ops through second decade

Relay Orbit Evolution

- Local time of MRO and ODY orbit planes determine contact times for surface relay support and critical event coverage times
- Odyssey
 - Currently operating at 5 PM LMST descending node
 - THEMIS prefers orbit plane towards noon, while GRS prefers orbit plane towards terminator
 - S/C bus energy constraints preclude ops between
 10 AM 2 PM LMST due to eclipse duration
 - Move to 3 PM LMST (2008-2011) is under consideration for THEMIS science considerations
 - Potentially impacts relay performance by reducing diversity of ODY+MRO contact times and reducing aggregate ODY+MRO critical event coverage

MRO

- Primary Science Phase designed for 3 PM LMST
 - Compromise between HiRISE and CRISM optimal viewing geometries
 - MCS desires constant LMST to identify long-term seasonal atmospheric effects
- Spacecraft could operate in ~2-5 PM LMST range and still maintain orientation for science observing
- In principle, MRO could operate at any LMST in inertial mode
- Recommend program-level science/telecom trade to finalize orbit strategy

Critical Event Coverage

- Successful capture of high-rate telemetry during critical events requires relay asset at the right place, right time
- Low-altitude science orbiters provide limited coverage relative to highaltitude telesat like MTO
 - MSTO can provide intermediate level of coverage during elliptical orbit phases
- Lander missions can attempt to tailor mission design (LD/AD) to enable coverage w/ existing orbiters
 - MSL has done this for 2009, allowing MRO EDL coverage over full +-45 deg latitude range
 - Can drive increase in C3 and/or V_{inf}
- Have performed initial analysis of all 2nddecade opportunities to examine arrival
 geometries and potential for critical event
 coverage
 - Initial results are encouraging, suggesting that large latitude ranges can be targeted with critical event coverage and acceptable C3, V_{inf} costs

Total Coverage (w/out Plane Change)

Mars Science & TelecomOrbiter (MSTO)

Mission Objectives

Multiple science objectives

- Aeronomy
- Trace Gas
- Executed in consecutive science orbits

Long-term (multiyear) observation

Approximate 11-year solar cycle

Infrastructure for future missions:

- Critical event coverage
- Science data relay
- 10 years telecommunications

Feed Forward for future missions:

Definition of aerobraking and aerocapture environments

Instruments/Payload

- 80-100 kg
- 7 to 10 instruments

MSTO orbit:

- Science Phase 1 (red)
- Science Phase 2 (yellow)
- Telecom Infrastructure Phase (green)

Mission Scenario

- 300 km x 34000 km
- Inclination 75 deg

Aerobraking Phase I

- Duration: ~7 months

Science Phase I

- Duration: 1 year
- 150 km x 6500 km

Aerobraking Phase II

- Duration: 2.5 months

Science Phase II

- Duration: 1 year
- 400 km x 400 km

Telecom Infrastructure Phase

- Duration: 8 years
- 400 km x 2000 km

Mission Options

- 2011 Opportunity
 - LD: Oct 18-Nov 6, 2011
 - AD: Sep 3-Sep 9, 2012
- 2013 Opportunity
 - LD: Nov 21-Dec10, 2013
 - AD: Sep17-Sep 29, 2014

Mars Science & Telecom Orbiter (MSTO)

- Characterize the upper atmosphere of Mars
- Determine how the solar wind interacts with the upper atmosphere and ionosphere
- Define the aerobraking and aerocapture environments for future Mars exploration

Example Instruments

- Camera
- Fourier TransformSpectrometer
- SubmillimeterEmission Sounder
- lon/electronDetector
- Ion/neutral MassSpectrometer
- Langmuir Probe
- Magnetometers

Technology

- -UHF Antenna
- –S/C Thermal Subsystem for low-T instruments (80K)
- Adaptation of aeronomy instruments to Mars atmosphere

Mass Summary*

- -S/C Dry Mass CBE 755 kg
- -Payload CBE 81 kg
- -S/C Monoprop Load 1361 kg
- -Wet Mass 2557 kg

Trajectory*

- -Type II
- $-C_3$ of 12.6 km²/s²
- -Flight time 10 months
- -Arrival V∞ 2.78 km/s

Launch Vehicles

- -Atlas V-401 (cap.= 2695 kg)
- -Delta IV 4450 (cap. = 3465 kg)

*Mission design info for 2011 opportun 2013 launch would require LV upgrade